Notes on the application of Lax-Milgram to divergence form equations

February 25, 2016

Recall that we are trying to solve the equation $L u-\sigma u=F$ weakly in Ω for $u \in W_{0}^{1,2}(\Omega)$ and for $F=D_{i} f^{i}+g$. Consider the associated bilinear form

$$
\mathcal{L}_{\sigma}(u, v):=\int_{\Omega}\left(a^{i j} D_{j} u D_{i} v+b^{i} u D_{i} v-c^{j} D_{j} u v+(\sigma-d) u v\right) d x .
$$

Observe that

$$
\mathcal{L}_{\sigma}: W_{0}^{1,2}(\Omega) \times W_{0}^{1,2}(\Omega) \rightarrow \mathbb{R}
$$

is a bounded bilinear functional, i.e.

$$
\left|\mathcal{L}_{\sigma}(u, v)\right| \leq C_{1}\|u\|_{W^{1,2}(\Omega)}\|v\|_{W^{1,2}(\Omega)}
$$

(Recall that the $W^{1,2}(\Omega)$ and $W_{0}^{1,2}(\Omega)$ norms are the same). Moreover, in lecture, we have seen that \mathcal{L}_{σ} is coercive, at least for σ sufficiently large:

$$
\mathcal{L}_{\sigma}(u, u) \geq C_{2}\|u\|_{W^{1,2}(\Omega)}^{2}
$$

We would like to apply Lax-Milgram to \mathcal{L}_{σ}. We thus see that for any bounded linear F : $W_{0}^{1,2}(\Omega) \rightarrow \mathbb{R}$, there is a unique $u \in W_{0}^{1,2}(\Omega)$ so that

$$
\mathcal{L}_{\sigma}(u, v)=F(v)
$$

for all $v \in W_{0}^{1,2}(\Omega)$. In particular, for any such F, there is $u \in W_{0}^{1,2}(\Omega)$ so that

$$
\int_{\Omega}\left(a^{i j} D_{j} u D_{i} v+b^{i} u D_{i} v-c^{j} D_{j} u v+(\sigma-d) u v\right) d x=F(v)
$$

In particular, we may take any functional of the form

$$
F(u)=\int_{\Omega}\left(f^{i} D_{i} u-g u\right) d x
$$

for $f^{i}, g \in L^{2}(\Omega)$. Thus, we have found $u \in W_{0}^{1,2}(\Omega)$ solving $L_{\sigma} u=D_{i} f^{i}+g$ weakly for $f^{i}, g \in$ $L^{2}(\Omega)$. However, it is more convenient to think of $F(u)$ as an arbitrary element of $W_{0}^{1,2}(\Omega)^{*}$. By this, we mean just the space of distributions w that define a bounded linear operator on $W_{0}^{1,2}(\Omega)$ when using the L^{2}-inner pairing. Notice that $D_{i} f^{i}+g$ is precisely such a distribution.

Thus, for $F \in W_{0}^{1,2}(\Omega)^{*}$, Lax-Milgram gives us $u \in W_{0}^{1,2}(\Omega)$ so that

$$
\mathcal{L}_{\sigma}(u, \cdot)=F(\cdot)
$$

as elements of $W_{0}^{1,2}(\Omega)^{*}$. This map $F \mapsto u$ can be seen to be linear and (by part of the conclusion of Lax-Milgram) bounded. We thus call it $L_{\sigma}^{-1}: W_{0}^{1,2}(\Omega)^{*} \rightarrow W_{0}^{1,2}(\Omega)$. The proof then can go on precisely as in class.

The confusing point is that the dual space (in the usual, abstract sense) to $W_{0}^{1,2}(\Omega)$ is again itself, because the dual space to a Hilbert space is itself. However, here we're considering the dual with respect to the L^{2}-inner product, so what we get is "different," and we write it as $W_{0}^{1,2}(\Omega)^{*}$. It is clear that $L^{2}(\Omega) \subset W_{0}^{1,2}(\Omega)^{*}$ because $W_{0}^{1,2}(\Omega) \subset L^{2}(\Omega)$ (what does this mean?).

If you're confused by this it may help, or completely confuse you, to think about the fact that any infinite separable Hilbert space is isometric to $\ell^{2}(\mathbb{Z})$. So, to say that \mathcal{H}_{1} is the dual to \mathcal{H}_{2} makes no sense. We need a way to pair them! A common thing to do is to say that \mathcal{H} is dual to itself with the pairing being the \mathcal{H} inner product. But obviously $\ell^{2}(\mathbb{Z})$ is also dual to any separable Hilbert space, but there's a totally non-cannonical pairing!

